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Possible convex polyhedra for three-dimensional water networks in clathrate and semiclathrate 
hydrates are discussed in this paper. All such polyhedra have all vertices of order three. Therefore, 
the number of vertices (v), edges (e), and faces (f) must satisfy the equalities e = 3v/2 and f = (4 + v)/2. 
Possible polyhedra of this type with exclusively quadrilateral, pentagonal, and hexagonal faces and 
with up to 18 faces are examined. Many of these polyhedra are duals of various triangulated co- 
ordination polyhedra studied in previous papers of this series. In order to minimize angular strain, 
polyhedra with the maximum number of pentagonal faces are favored for water networks in clathrate 
and semiclathrate hydrates subject to the presence of sufficiently large cavities to accommodate the 
guest molecule. 

In dieser Arbeit werden mi3gliche konvexe Polyeder f'tir dreidimensionale Wasser-Netzwerke 
in Klathrat- und Semiklathrathydraten diskutiert. Daher muB die Anzahl der Scheitelpunkte (v), 
Kanten (e) und Fl~ichen (f) den Gleichungen e = 3v/2 und f = (4 + v)/2 gentigen. Es werden m6gliche 
Potyeder dieses Typs mit bis zu 18 Fliichen, die ausschlieBlich quadrilateral, pentagonal und hexagonal 
sein sollen, untersucht. Viele dieser Polyeder sind Zwillinge yon verschiedenen, aus Dreieeken zu- 
sammengesetzten Koordinationspolyedern, die in frtiheren Arbeiten dieser Reihe untersucht wurden. 
Um die Winkeldeformation auf ein MindestmaB zurtickzuf'tihren, werden im Falle yon Wasser- 
netzwerken in Klathrat- und Semiklathrathydraten Polyeder mit der maximalen Anzahl yon pentagona- 
len Flgchen bevorzugt, well so ausreichend groBe Hohlr~iume zur Aufnahme des Gastmolekiils ent- 
stehen. 

Introduction 

In  recent  years  the s t ruc tura l  chemis t ry  of a novel  class of organic  hydra tes ,  
the c la thra te  hydra tes  [2, 3], has received cons iderab le  a t tent ion .  These c la thra te  
hydra tes  con ta in  a re la t ively  large n u m b e r  of water  molecules  for each guest  
molecule.  The  water  molecules  in these c la thra te  hydra tes  are j o ined  by  hyd rogen  
bond ing  into  ne tworks  of fused po lyhedra .  In  cases where the guest  molecule  is an 
amine,  one or  more  n i t rogen  a toms  of the guest  molecule  m a y  also be b o n d e d  to 
the fused po lyhed ra l  ne twork  of water  molecules  resul t ing in "semic la thra tes"  
ra ther  than  true c la thra tes  [2, 3]. Some of the observed  p o l y h e d r a  [2] in the  
c la thra te  and  semic la th ra te  hydra tes  are ra ther  pecul ia r  ones not  o therwise  
encoun te red  in chemical  systems. This  paper  examines  the genera t ion  of the po ly-  
hed ra  observed  in c la thra te  and  semic la thra te  hydra tes  by  a p p r o p r i a t e  modif ica-  
t ions of the techniques  successfully used in ear l ier  papers  for the s tudy of coord ina -  
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tion polyhedra [4, 5], metal clusters [1], and polyhedral cage boron hydrides [1]. 
In the polyhedra of the clathrate and semiclathrate hydrates the vertices cor- 
respond to tetrahedral or nearly tetrahedral oxygen atoms and the edges to hydro- 
gen bonds between pairs of oxygen atoms. 

Generation of Possible Polyhedra 

The problem of the generation and evaluation of possible polyhedra for water 
networks in clathrates and semiclathrates is a more complex problem than the 
generation and evaluation of possible coordination polyhedra [4, 5], metal cluster 
polyhedra [1], or boron hydride polyhedra [1] for the following three reasons: 

1. There is no inherent direct limitation on the size 1 of polyhedra in clathrate 
and semiclathrate water networks as in the case of coordination polyhedra where 
both steric considerations and the number of available orbitals on the central 
atom impose strict limits on the coordination number and hence on the number 
of vertices and the size 1 of possible coordination polyhedra [4-61. Closed metal 
cluster [1] and boron hydride polyhedra also have an inherent size 1 limitation 
based on the presence of only triangular faces for maximization of bond delocali- 
zation [1] combined with limitations on the maximum vertex order imposed by 
restrictions on the number of available metal or boron orbitals. Aspecific example 
of an extremely large polyhedron found in a clathrate is the irregular 116, 174, 
60-polyhedron found 2 [7] in [(n-CeH9)3S] F .  23 H20.  This polyhedron has 
2 quadrilateral faces, 48 pentagonal faces, and 10 hexagonal faces. However, this 
polyhedron has reentrant edges and hence is not a convex polyhedron but instead 
a concave polyhedron. 

2. The polyhedra in clathrate and semiclathrate water networks are not 
discrete but instead are joined in an infinite three-dimensional lattice. The space 
filling properties of convex polyhedra 1-8] in such infinite three-dimensional 
lattices indirectly limit the size 1 of polyhedra in water networks. A large convex 
polyhedron (i.e. one with large v, e, and f values) can be approximated by a sphere. 
Packing spheres into a three dimensional network always leaves relatively small 
spaces which correspond to small polyhedra with considerable angular strain. 
Thus, if only convex polyhedra are considered for the three-dimensional polyhedral 
network, the size and shape of the relatively small polyhedra necessary to fill the 
gaps in packing large polyhedra will introduce increasing amounts of angular 
strain as the size of the large polyhedra increases. A similar limitation on the 
maximum size of concave polyhedra with one or more reentrant edges does not 
obtain. However, concave polyhedra may be regarded as derived from the fusion 
of two or more smaller convex polyhedra such that the volumes of the convex 
polyhedra overlap. The portions of the convex polyhedra inside the resulting 
concave polyhedron (i.e. those which bound the region of overlap) are then lost. 

As used here the "size" of a polyhedron refers to its volume relative to its edge length. In 
general a polyhedron with a larger "size" has a larger number of vertices, edges, and faces. 

2 This notation indicates the number of vertices, edges, and faces, respectively, in various polyhedra 
as introduced in Ref. [4]. The notation used to indicate the number of faces with various numbers 
of sides is described by Wells, A.F.: The third dimension in chemistry, London: Oxford University 
Press 1962, and is also used in Table III of Ref. [2]. 
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3. In the semiclathrate hydrates of the alkylamines, the nitrogen atoms of 
the alkylamine guest molecules form hydrogen bonds with the oxygen atoms of 
the network of fused water polyhedra. However, since each polyhedron contains 
only one alkylamine molecule, since the alkylamines forming semiclathrate 
hydrates contain only one nitrogen atom, and since the polyhedra large enough 
to enclose the alkylamine guest molecule contain at least twelve vertices, this 
effect can involve no more than about 10% of the vertices of the water network 
polyhedra. The perturbations introduced by hydrogen bonding of the nitrogen 
atoms of the alkylamine guest molecules to the polyhedral water network are 
small relative to those introduced by the packing properties of polyhedra and 
therefore may be neglected in this treatment as long as the alkylamine guest 
molecules contain no more than one nitrogen atom. However, in hexamethylene- 
tetramine hexahydrate [9] where the amine contains four nitrogen atoms, of 
which three participate in hydrogen bonding, the hydrogen bonding of the 
hexamethylenetetramine to the water network is significant enough to destroy 
the basic polyhedral structure, although a regular network is still maintained.The 
treatment in this paper, therefore, is limited to clathrate hydrates and semiclathrate 
hydrates where the guest molecule (an alkylamine in all of the known cases) 
contains no more than one atom which forms hydrogen bonds with the water 
network. For the reasons stated above such semiclathrate hydrates can be treated 
as if they were true clathrate hydrates ignoring the single hydrogen bonding inter- 
action between each guest molecule and the polyhedral three-dimensional water 
network. 

For the first two reasons discussed above consideration of possible polyhedra 
for water networks in clathrates and semiclathrates can be limited to convex 
polyhedra and restricted to polyhedra with no more than a given number of faces. 
Such a restriction is also necessary to keep the scope of the problem within 
manageable limits. The maximum number of faces of polyhedra considered in 
this work is 18, since this is sufficient to include all known convex polyhedra 
found water networks in clathrates. The only larger polyhedra found in such 
water networks are the 26-hedron [10] in 4(CH3)3N. 41 H20 and the irregular 
116, 174, 60-polyhedron 2 [-7] found in [-(n-C4H9)3S ] F .  23 H20. Both of these 
large polyhedra are concave with the 26-hedron being formed by fusion of two 
14-hedra (51262) sharing a common hexagonal face. 

The tetrahedral hybridization of the oxygen atoms in hydrogen-bonded water 
molecules imposes the following basic conditions that all polyhedra for water 
networks in clathrates must satisfy: 

1. All vertices of the polyhedron must have an order of exactly three. Each 
oxygen atom in these water networks has exactly four hydrogen atoms bonded 
to it. However, only three of the hydrogen bonds attached to any oxygen atom 
are so directed (i.e. on the same side of a supporting plane (Stutzeben) [I1] 
through the oxygen atom) that they can be edges of the same polyhedron, This 
indicates a maximum order of three for vertices of polyhedra for water networks 
in clathrates. Furthermore, geometrical considerations require that each vertex 
in any three-dimensional polyhedron has an order of at least three. For these 
reasons, all vertices of polyhedra for water networks in clathrates must have an 
order of exactly three. 
22* 
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2. No face of the polyhedron can be triangular and pentagonal faces are greatly 
favored. The bond angle for an unstrained tetrahedral atom is 109~ '. This is 
closest to the 108 ~ interior angle in a regular pentagon. An equilateral triangle 
has an interior angle of only 60 ~ which is so far from the tetrahedral angle that 
excessive angular strain prevents the occurrence of triangular faces in polyhedra 
for water networks. Quadrilateral and hexagonal faces with interior angles of 
90 ~ and 120 ~ respectively, for these polygons when regular have a much smaller 
and more tolerable amount of angular strain. Furthermore, in the hexagon (as 
well as in polygons with larger number of sides) possible nonplanarity of the 
faces provides possibilities for relief of some of the angular strain. Angular strain 
considerations suggest that the relative tendency for various types of polygonal 
faces to occur in polyhedra for water networks in clathrates decreases in the 
following sequence: 

Pentagon (most favorable) > hexagon > quadrilateral ~> triangle (least favorable). 

In the actual polyhedra many of the faces will not be regular polygons and the 
angles will not correspond exactly to the [(n-2)/n] 180 ~ values required for a 
regular polygon with n sides. However, the sum of the interior angles of even an 
irregular (but still planar) polygon with n sides must be a constant (n-2)180 ~ 
Therefore, as long as planarity is preserved, deviations in one interior angle of a 
polygon because of irregularity will be compensated by opposite deviations in 
the other angles. Thus, the angular strain is not appreciably changed by moderate 
deviations from regularity. Extreme deviations from regularity can only increase 
the angular strain. 

A further complication is that faces of polyhedra with five or more edges need 
not be planar. Bending of a face can serve to reduce the angular strain in faces 
with six or more edges. However, bent faces cannot be a major factor in the 
construction of convex polyhedra for three-dimensional water networks in 
clathrate hydrates for the following reasons: 

1. Incorporation of an outwardly bent face (i.e. one bent in a direction to 
increase the area enclosed by the polyhedron) introduces reentrant angles into the 
polyhedron thereby making it concave. Such concave polyhedra may be decom- 
posed into two or more smaller convex polyhedra with overlapping volumes as 
discussed above. As the concavity of the large concave polyhedron increases, the 
volume of the convex polyhedra into which the concave polyhedron can be 
decomposed relative to the volume of the original concave polyhedron decreases 
and the degree of overlap of the convex polyhedra into which the concave poly- 
hedron can be decomposed decreases. Concave polyhedra can be excluded from 
consideration in this paper since all concave polyheadra can be decomposed into 
two or more convex polyhedra of types included in the treatment of this paper. 

2. Incorporation of an inwardly bent face (i.e. one bent in a direction to 
decrease the area enclosed by the polyhedron) will decrease the ability for a 
given polyhedron to enclose a guest molecule. Hence, inwardly bent faces will 
only occur when necessary for the polyhedron to remain closed. 

These considerations suggest that simple angular strain as discussed above is 
the major factor in determining the polygons to be found as faces of polyhedra 
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in three-dimensional water networks and that relief of strain by bending will not 
cause polygons with more sides than those favored by angular strain considerations 
to become predominant as faces in the construction of such polyhedra. 

The first paper of this series I-4] listed relationships between the parameters 
describing closed convex three-dimensional polyhedra with only triangular and 
quadrilateral faces. The following are the analogous relationships between the 
parameters describing closed convex-dimensional polyhedra with all vertices of 
order three: 

1. Euler's Relationship [12] : e + 2 = v + f .  
2. Relationship between the Edges and Vertices: 3v = 2e. 
3. Relationship between the Edges and Faces: ~ if~ = 2e. Here f~ refers to the 

i 
numbers of faces with i sides or edges. Thus f4 refers to the number of quadrilateral 
faces (designated as q in the first paper of this series [4]). 

4. Totality of Faces: ~ fi = f .  
i 

For any closed convex three-dimensional polyhedron with all vertices of order 
three the numbers of edges and faces for a given number of vertices are uniquely 
defined by the relationships e = 3v/2 and f = (4 + v)/2. This reduces drastically 
the number of sets of v, e, and f values which have to be considered. For a given 
set of v, e, and f values there are many possible polyhedra corresponding to 
different solutions of the equations ~ ifi = 2e and ~ fi = f .  

i i 
Table 1 summarizes the possible closed convex three-dimensional polyhedra 

with all vertices of order three, with no more than eighteen faces, and with only 
quadrilateral, pentagonal, and hexagonal faces. Figure 1 shows Schlegel diagrams 
1-12] of some of the more important of these polyhedra in the chemistry of clathrate 
water networks. 

Identification of the actual polyhedra corresponding to various sets of v, e, f,  
and f, values is relatively difficult in many cases but has been achieved for the 
polyhedra of greatest potential importance in polyhedral water networks in 
clathrates. The relationship of duality [13], briefly cited in the first paper of this 
series [41 is of considerable value in the identification of the polyhedra listed in 
Table 1. In a pair of (mutually) dual polyhedra Pa and Pb the vertices of one of 
the polyhedra correspond to the faces of the other and vice versa. Both Pa and Pb 
belong to the same symmetry point group. Furthermore, the following relationships 
are satisifed where the subscripts a and b refer to the dual polyhedra Pa and Pb, 
respectively: v b = f,  ; e b = e~ ; fb = Va" The correspondence of a vertex of a polyhedron 
P, to a face of a polyhedron Pb and vice versa also mean that the following rela- 
tionships must be satisifed for all n: (j.)~ = (f,)b and (f.)a = (J,)b. One obvious 
consequence of the latter set of relationships is that the polyhedra with all vertices 
of order three generated in Table 1 all are duals of some triangulated polyhedron 
[4]. Triangulated polyhedra are of interest as coordination polyhedra [4, 5], 
metal cluster polyhedra [1], and cage boron hydride polyhedra [1] and thus 
were discussed in earlier papers of this series. Many of the polyhedra in Table 1 
can be identified as duals of previously observed triangulated polyhedra. The 
"parallel plane method" for generating polyhedra [5] is useful for generating 
duals of polyhedra in Table 1. The existence of the 18, 27, ll-polyhedron (415 l~ 
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is regarded as unlikely (although not yet rigorously disproved) since all previous 
attempts during the study on polyhedra for high coordination numbers [5] to 
find its dual (i.e. an 11, 27, 18-polyhedron with no vertices of order six or higher) 
were unsuccessful. 

Discussion 

The pentagonal dodecahedron is the optimum polyhedron for water networks 
in clathrates and semiclathrates since it is the only polyhedron with all vertices 
of order three where all faces are the favored pentagons with minimum angular 
strain. The pentagonal dodecahedron cannot be packed into a lattice if it is kept 
regular with idealized lh symmetry [14]. However, if the pentagonal 108 ~ angles 
in the pentagonal dodecahedron are distorted slightly to the tetrahedral value 
of 109028 ', then pentagonal dodecahedra can form a network with cubic symmetry. 
This network also contains larger 28, 42, 16-polyhedral (51264) holes which 
represent a distorted C2v version of the idealized T d polyhedron of this type. In 
another packing of pentagonal dodecahedra larger holes are also generated 
which correspond to the 24, 36, 14-polyhedron (51262), i.e., the dual of the hexagonal 
bipyramid, and to the 26, 39, 15-polyhedron (51263). These water networks with 
pentagonal dodecahedra are found in numerous clathrate hydrates and gas 
hydrates [2, 3]. The water networks containing pentagonal dodecahedra may also 
contain the 14-hedra, 15-hedra, and 16-hedra with the maximum numbers of 
the favored pentagonal faces. 

A pentagonal dodecahedron in a water network has a volume of about 
170 A 3 [ 15]. Some types of guest molecules in a clathrate or semiclathrate hydrate 
will be either too large or of the wrong shape to fit into a cavity of this size and 
shape. In some cases the guest molecules can be accommodated in the somewhat 
larger 24, 36, 14-polyhedra (51262) (volume ~220A 3) or 26, 39, 15-polyhedra 
(51263) (volume --~ 240 A 3) which form the larger cavities in one of the packings 
of pentagonal dodecahedra. The still larger 28, 42, 16-polyhedron (51264) is found 
in isopropylamine hydrate 10 (CH3)2CHNH 2 �9 80 H20 [16]. 

Clathrate and semiclathrate hydrates of relatively bulky amines contain 
still larger polyhedra. Thus, the water network of diethylamine hydrate, 
12(C2Hs)2NH. 104 H20, contains D3a 32, 48, 18-polyhedra (51266); the diethyl- 
amine molecules fit relatively well into these ellipsoidal cavities [17]. This network 
of 32, 48, 18-polyhedra (51266) contains no pentagonal dodecahedral cavities but 
instead some irregular concave 29, 44, 17-polyhedra (435866) which because of 
their concavity contain one vertex of order four. The water network of t-butyl- 
amine hydrate, 16(CH3)3CNH2. 156H20, the only known amine clathrate 
hydrate without hydrogen bonding of the amine to the water network, contains 
unusual C3v 30, 45, 17-polyhedra (43596273); [18] this is the only polyhedron with 
heptagonal faces encountered in clathrate hydrates (polyhedra with heptagonal 
faces have been omitted from Table 1, since consideration of such polyhedra 
increases the possibilities to an unmanageable number). Packing these 30, 45, 17- 
polyhedra (43596273) into a three-dimensional network leaves small cavities of 
12, 18, 8-polyhedra (4454); this polyhedron is the dual of the Dza 8, 18, 12-dodeca- 
hedron which is the most common coordination polyhedron for eight-coordinate 



318 R.B. King: Polyhedral Water Networks 

complexes [-4, 19], The 12, 18, 8-polyhedra (4454) in 16(CH3)3CNH 2 �9 156 H 2 0  
are far too small to accommodate  any guest molecules. However, the 30, 45, 17- 
polyhedron (43596273) has a free volume about 30% larger than that of the 28, 42, 
16-polyhedron (51264); this additional volume may be necessary to accommodate  
the relatively bulky t-butylamine molecule. Furthermore,  the failure of the 
t-butylamine in its clathrate hydrate to form hydrogen bonds with the polyhedral 
water network may make a larger polyhedron necessary to enclose it in to keep 
the t-butylamine molecules beyond the bonding distances to the atoms in the 
water network. Most  of the faces of both the 32, 48, 18-polyhedra (51266) and the 
30, 45, 17-polyhedra (43596273) are the favored pentagons. 

The theory developed in this paper suggests that the normal water network 
for clathrates and semiclathrates contains the very favorable pentagonal dodeca- 
hedron. However, if the guest molecules are too large to fit into the cavities of 
pentagonal dodecahedra (e.g. diethylamine and t-butylamine), then alternative 
water networks with larger polyhedra will be formed. This suggests that clathrate 
and semiclathrate hydrates of relatively large and non-spherical molecules which 
do not fit into the polyhedra with up to 18 faces discussed in this paper are most 
likely to contain unusual polyhedra. However, a limiting factor in the preparation 
of clathrate hydrates of large molecules of appropriate polarity is likely to be 
the difficulty of packing large convex polyhedra into a three-dimensional network 
because of the concurrent need in such networks for strained small polyhedra 
both to fill the gaps between the large polyhedra and to accommodate  the fourth 
hydrogen bond to each oxygen atom. 
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